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Abstract— This paper discusses how to enhance the business using the statistical terms “Correlation Analysis” and a machine 

learning algorithm “Linear Regression”. In many research projects, correlation and regression analysis are the most often utilized 

statistical tools. The purpose of correlation analysis is essentially the same in quantitative analytical investigations, making it 

advantageous to look into the link between independent and dependent variables. In order to show how to use a widely common statistical 

tool called correlation and regression analysis for beginning researchers, this study used secondary data. Regression analysis comes 

after correlation. It begins with the idea of a simple correlation coefficient, which indicates how linearly related two variables are to one 

another. A scatter plot should be created to check for a linear relationship between the two variables. If explanatory variables change by 

one unit, regression analysis technique exposes the relevance of variables and the degree of change in exogenous variables. The results 

of this study have ramifications for how to analyze data and how to do correlation and regression analyses. 
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I. INTRODUCTION 

Correlation Analysis shows the linear relationship 

between two variables. It measures both the magnitude of the 

linear relation between independent variables and also shows 

the direction of their relation [1].  

Regression [2] is a technique used for two things. First, it 

establishes the link of dependent variable with one or more 

independent variables. Second, it is also used for forecasting 

and prediction. 

The format of this paper is as follows: The specifics of the 

approaches utilized are illustrated in Section 1; the methods' 

implementation and outcomes are covered in Section 2. 

Correlation Analysis 

A correlation coefficient (r) is a metric that expresses a 

relationship, or a statistical link between two variables. A 

positive correlation occurs when the dependent variable 

increases as the independent variable does. A negative 

correlation indicates that one variable falls as another rises.  

A +1 of correlation coefficient shows a perfect correlation. 

This means the 1st variable is in exact relation with the second 

positive variable. While -1 correlation coefficient shows a 

perfect negative correlation. This means 1st variable is in 

negatively linear relation with 2nd variable. If the correlation 

coefficient is 0 then there is no linear relation between both 

the variables. If the value of r lies in between 0.5 to .75 it is 

considered as moderately correlated variables. 

Linear Regression 

By fitting a linear equation to the observed data, linear 

regression makes an attempt to predict the relationship 

between two variables. One of the variables is regarded as an 

explanatory variable and the other as a dependent variable. 

Linear regressions are of two types. I) Simple Linear 

Regression and (ii) Multiple Linear Regression. 

Simple Linear Regression: The easiest model to forecast 

the value of one variable in relation to another is simple linear 

regression. [3]. Finding a relationship between two 

continuous variables can be done using this regression where 

independent variable is the predictor and the others are 

dependent variable [4]. 

This regression is a parametric test, which mean it has 

some pre-assumptions about the data. These assumptions are: 

1. Homogeneity of variance: The amount of our 

forecast's error is rather constant in size across the 

independent variable's range of values. 

2. Independence of observations: Since the dataset's 

observations were compiled using statistically 

acceptable sampling methods, there are no undetected 

correlations between the variables. 

3. Normality: The observed data are thought to exhibit 

normal distribution. 

4. The relationship between the explanatory and 

response variable is linear: based on the straight line 

that most closely matches the data points. 

The formula of this Regression is: 

У = β0 + β1 X + ε  

- У is the response variable in light of the explanatory 

variable's observed values (x). 

- When the value of X is at origin, the constant value β0 

is called the intercept. 

- β1 is the coefficient of independent variable.  

- ε is our estimation's inaccuracy or the extent of its 

change. 
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The optimal line to match the data is found using linear 

regression by identifying the regression coefficient (β1) with 

minimum error (ε). 

Multiple Linear Regressions: Using a variety of 

explanatory factors, it is a statistical technique that predicts 

the outcome of a responsive variable. Modelling the link 

between the independent variable and the dependent 

variables is the goal of MLR. [5]. 

Equation of Multiple Linear Regressions: 

Уi = β0 + β1 X1 + β2 X2 + β3 X3 + ... +βp Xp + ε  

Where, i = for n observations: 

Уi = outcome variable 

Xi = Predictor variables 

β0 = y – intercept (constant term)  

βp = each explanatory variable's slope coefficient 

ε = the model’s inaccuracy. 

The multiple regression models are based on the following 

assumptions: 

- The independent and dependent variables exhibit 

linear correlation. 

- The independent variables barely have any correlation 

with one another. 

- A normal distribution with a mean of 0 and variance 

of 1 is ideal for residuals. 

Residual Sum of Squares: Residual analysis plays a 

critical role in regression analysis. It gauges the degree of 

variation in a regression model's error term or residuals. The 

formula to measure this is given below [5,6]: 

RSS = Σ (yi – ýi )2 [Taking i = 1 to n]. where yi is the actual 

values of the raw data and ýi is the predicted values. 
Mean Squared Error: It is used to figure out the gap 

between values predicted by the model and actual values. [7].  

It is the mean of squared residuals (e2) and is calculated by 

dividing RSS by the number of data values.  

MSE = RSS/n  

MSE = (1/n) Σ (yi – ýi )2  

The root means square deviation (RMSD) of an estimator 

is the square root of its mean square error [8,9].  

RMSD = √MSE  

Example of Linear Regressions: 

To illustrate the above-discussed concepts effectively, this 

research employed a dataset (the Boston Housing Dataset). 

This housing dataset is derived from the data gathered by the 

U.S. Census Agency about housing in the Boston, 

Massachusetts, area. 

The polynomial regression model has been used in this 

study due to the significance of model combination.  

 

 

II. METHODOLOGY 

A. Data pre-processing. 

‘Boston House Price’ dataset containing 506 rows and 14 

columns. These variables serve as the characteristics of the 

dataset. These characteristics aid in predicting the typical 

housing price in Boston. The below figure shows the little 

introduction about the data. 

 
Fig. 1 First five rows and all the columns of the data. 

Finding the null values and features that have a strong 

correlation with the output variables came next. Details on 

each are provided in the table below: 

Attribute Detail 

CRIM Per capita crime rate by town 

ZN Proportion of Residential land zoned 

for lots over 25000 sq. ft. 

INDUS Proportion of non-retail business acres 

per town 

CHAS Charles River Dummy variable (1 if 

tract bounds, 0 otherwise) 

NOX Nitric oxide concentration 

RM Average number of rooms per dwelling 

AGE Proportions of owner-occupied units 

built prior to 1940 

DIS Weighted distance to five Boston 

Employment centers 

RAD Accessibility score for radial 

highways. 

TAX Entire value of property tax for every 

$10,000 

PTRATIO Pupil teacher ration by town. 

LSTAT % Lower level of population status 

MEDV Owner-occupied residences' median 

values in the $1,000 range 

B. Data Analysis 

Before creating a regression model, exploratory analysis is 

an essential step. It helps researchers to discover the pattern 

of the data which ultimately help to choose the right machine 

learning algorithm [10]. 
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To do this, first import all the required libraries into the 

software (python e.g.). After analysis being processed, we 

analyze the pattern of target variable (‘medv’). The graph 

(Fig.1) given below help us to analyze the distribution of the 

target variable;  

 
Fig.2 This shows the distribution followed by the target 

variable. 

This graph shows that the average price of houses is 

centered around 20K. Apart from the target variable, other 

variables also play a significant role in the model’s 

performance. We analyze the correlation between two 

variables. It helps to choose the correct set of attributes while 

developing the model [11]. 

Upon checking the correlation values, there were two 

variables which were highly correlated with the target 

variables. The correlation of both the variables have shown 

below: 

 
Fig. 3 Positive Correlation of ‘medv’ and ‘rm’. 

 
Fig. 4 Negative Correlation of ‘lstat’ and ‘medv’. 

C. Model Selection 

The data should be appropriately pre-processed before 

creating models. Next, Using the scikit-learn package, A train 

set and a test set of data were created [12]. In the software, the 

required libraries were imported for the train-test split and 

Linear Regression model.  

D. Regression Model 

Regression models show that the independent factors or 

variables forecast the values of the dependent variables. [13]. 

Machine learning methods frequently divide the data into 

train and test datasets. This enables us to evaluate the model's 

performance using both known and unknown data. Here, the 

multi-variable polynomial regression formula is used 

internally by the linear regression model. 

After training the model, the unobserved or unseen data 

were predicted. 

It became important to visualize how the model's predicted 

behavior would behave given the observed data. This makes 

it easier to see how the model behaves in relation to the initial 

values.  

 
Fig. 5 Comparison of Regression’s predicted and original 

values. 

Figure 5 above demonstrates how well the model has 

learned the data and can reasonably anticipate prices. 

Measuring the performance of a linear regression model 

involves using the "Mean Absolute Error," "Mean Squared 

Error," and "r2" score. It is necessary to compute the mistakes 

in order to comprehend the model's suitability for making 

predictions in the business world. The errors were measured 

for different degree of polynomials and it was visualised also. 

The 2nd order polynomial regression model was found to have 

the least error. Finally, a graphic explanation of the selection 

of second-degree polynomial regression is provided below. 

 
Fig. 6 Selecting the degree of polynomial 
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Figure 6 displays the inaccuracy as measured by various 

model of different polynomial degrees. The test error is 

lowest at the second order and rapidly increases after the 

second order polynomial. Therefore, choosing a polynomial 

regression model of second order is optimal for this problem. 

III. CONCLUSION 

Regression modelling and correlation are statistical 

methods commonly used for observational and experimental 

studies. This review paper has focused on understanding the 

concepts of correlation, data analysis and developing a 

regression model to predict future unseen data. After data 

pre-processing and data cleaning, to achieve the target of the 

problem different algorithm had been experimented. For 

example, at first simple regression was used to experiment 

but the errors were not satisfactory. 

With multi linear regression which is used for more than 

two variables having linear relationship with the output 

variable, the error little improved but still it was not good 

enough. At last polynomial regression has been used. This 

regression is used when output variables are in polynomial 

relation with all the independent variables. Finally, the 

accuracy of the models was tested to assess the model's 

goodness of fit after attempting every sort of suitable 

algorithm. The model is picked with the least amount of 

tolerance for error. For example, this paper has shown the 2nd 

degree polynomial regression model has the least error and 

hence this model could be used for predicting the price of the 

city having the least error.   
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